Barker method is often less sensitive to the shape of the P vs. x_1 curve near the end points than is the Mixon et al. method. The latter reflects the shapes of the splined fits in that specific region while the former reflects the values of the G^{E} correlation constants obtained from a fit of all the data points across the entire composition range.

The activity coefficient values (as well as the y_i and G^E values) obtained are a function also of the equation of state used to estimate the vapor-phase fugacity coefficients. Table XI shows the effect of assuming ideal gases for the acetone + nitromethane system at 397.19 K where the pressure ranged from 195 to 665 kPa. The other three equations of state tested showed surprising agreement when the Tsonopoulos (7) correlation is used to estimate the B values for the virial equation.

Registry No. Ethyl acetate, 141-78-6; acetonitrile, 75-05-8; acetone, 67-64-1; nitromethane, 75-52-5.

Literature Cited

- (1) Khurma, J. R.; Muthu, O.; Munjal, S.; Smith, B. D. J. Chem. Eng. (2) Khurma, J. R.; Muthu, O.; Munjal, S.; Smith, B. D. J. Chem. Eng.
 (2) Khurma, J. R.; Muthu, O.; Munjal, S.; Smith, B. D. J. Chem. Eng.
 - Data, third of four preceding artcles in this issue
- Maher, P. J.; Smith, B. D. J. Chem. Eng. Data 1979, 24, 16.
 Mixon, F. O.; Gumowski, B.; Carpenter, B. H. Ind. Eng. Chem. Fundam. 1965, 4, 455.
- (5) Peng, D.-Y.; Robinson, D. B. Ind. Eng. Chem. Fundam. 1976, 4, 455.

- 455.
 (6) Barker, J. A. Aust. J. Chem. 1953, 6, 207.
 (7) Tsonopoulos, C. AIChE J. 1974, 20, 263.
 (8) Abbott, M. M.; Van Ness, H. C. AIChE J. 1975, 21, 62.
 (9) Gautreaux, M. F.; Coates, J. AIChE J. 1955, 1, 496.
 (10) Maher, P. J.; Smith, B. D. Ind. Eng. Chem. Fundam. 1979, 18, 354.
 (11) Hayden, J. G.; O'Connell, J. P. Ind. Eng. Chem. Process Des. Dev. 1975, 14, 200 1975, 14, 209.
- (12) Haman, S. E. M.; Chung, W. K.; Elshayah, I. M.; Lu, B. C. Y. Ind. Eng. Chem. Process Des. Dev. 1977, 16, 51.

Received for review July 29, 1982. Accepted September 24, 1982. We gratefully acknowledge the financial support received from the National Science Foundation Grant CPE-80000534 and from the Industrial Participants in the Thermodynamic Research Laboratory.

Total-Pressure Vapor-Liquid Equilibrium Data for Binary Systems of Nitromethane with Methanol and Ethanol

Jagjit R. Khurma, Ol Muthu, Sarat Munjal, and Buford D. Smith*

Thermodynamics Research Laboratory, Washington University, St. Louis, Missouri 63130

Total-pressure vapor-liquid equilibrium (VLE) data are reported at approximately 298, 348, and 388 K for methanol + nitromethane and at approximately 298, 348. and 398 K for ethanol + nitromethane. The experimental PTx data were reduced to y_i, γ_i , and $G^{\rm E}$ values by both the Mixon-Gumowski-Carpenter and the Barker methods. but only the Mixon et al. results are reported in their entirety. Seven G^E correlations were tested in the Barker data reduction; the five-constant Redlich-Kister equation gave the best results. The effect of the equation of state choice was investigated.

Introduction

This paper presents total-pressure vapor-liquid equilibrium (VLE) data for nitromethane with methanol and ethanol. Previous papers have reported data for nitromethane with 1chlorobutane (1), with chlorobenzene (2), and with ethyl acetate, acetonitrile, and acetone (3). The apparatus and techniques used to measure all of these data have been described previously along with the defining equation for the activity coefficient and the standard states used (4).

Chemicals Used

The sources and the purities of the chemicals used are listed in Table I. Activated molecular sieves (either 3A or 4A) were put into the chemical containers as they were received. Just prior to being loaded into the VLE cells, each chemical was poured into a distillation flask and distilled through a Vigreux column (25-mm o.d. and 470 mm long). The first and last portions of each distillate were discarded. The retained portions Table I. Chemicals Used

component	vendor	stated purity, %
ethanol	U.S. Industrial Chemicals	200 proof
methanol	Fisher Scientific	99.9
nitromethane	Mallinckrodt	99.9

were caught in amber bottles and back-flushed with dry nitrogen for transfer to the cell-loading operation. The stated purities of the chemicals were verified with gas-liquid chromatography at this point.

None of the compounds exhibited any degradation during the VLE measurements. The cell pressures were stable with respect to time, and all liquids were perfectly clear when removed from the cells at the end of the last isotherm.

Experimental Data

Tables II and III present the experimental PTx data. The "smooth" pressure values reported are from the least-squares cubic splined fits used to provide the evenly spaced values required by the finite-difference Mixon-Gumowski-Carpenter method (5) for the reduction of PTx data.

Figures 1 and 2 show the experimental data in terms of the pressure deviation P_D from Raoult's law

$$P_{\rm D} = P - [P_2' + x_1(P_1' - P_2')]$$

where P is the experimental mixture pressure and the P_i' values are the pure-component vapor pressures. The deviation pressure plot emphasizes the scatter more than the P vs. x 1 plot but does not show whether or not any azeotrope exists.

The point symbols in Figures 1 and 2 denote the experimental data points exactly. The curves approximate-in these cases quite closely-the splined fits of those data points. For an Table II. Experimental P vs. x_1 Values for the Methanol (1) + Nitromethane (2) System

		298.16 K			348.17 K			388.24 K	
		PRESSUR	E, KPA		PRESSU	RE, KPA		PRESSU	RE, KPA
	X1	EXPTL	SMOOTH	X1	EXPTL	SMOOTH	X1	EXPTL	SMOOTH
1	0000 0431 0407 1404 2107 3122 4159 5111 6154 7205 8592 9053 90549 0000	4.775 8.624 10.775 12.911 14.192 15.952 16.3799 17.137 17.433 17.435 16.974	4 • 775 8 • 623 10 • 779 12 • 902 14 • 202 15 • 963 16 • 799 17 • 140 17 • 435 17 • 435 17 • 305 16 • 973	.0000 .0429 .0804 .1400 .2103 .3118 .41558 .5108 .6151 .7199 .78591 .8591 .9053 .9549 1.0000	41.98 62.20 76.39 93.18 107.12 129.41 1351.59 145.59 145.59 151.45 152.27	41.98 62.22 76.34 93.26 107.04 129.40 135.57 145.64 145.69 151.53 151.28 151.28	.0000 .0425 .0799 .1394 .2094 .41460 .6145 .71952 .8590 .9559 1.0000	$\begin{array}{c} 151 \cdot 57\\ 205 \cdot 46\\ 244 \cdot 35\\ 297 \cdot 6\\ 340 \cdot 6\\ 469 \cdot 2\\ 518 \cdot 8\\ 531 \cdot 6\\ 5550 \cdot 6\\ 5557 \cdot 9\\ 5557 \cdot 9\end{array}$	151.58 205.52 297.52 340.74 4040.50 4040.50 554.50 554.50 555.55 555.55 555.55 555.555.555.555

Table III. Experimental P vs. x_1 Values for the Ethanol (1) + Nitromethane (2) System

298.18 K				348.15 K			398.17 K		
	PRESSUR	E, KPA	,	PRESSU	RE, KPA		PRESSU	RE, KPA	
X 1	EXPTL	SMOOTH	X1	EXPTL	SMOOTH	×1	EXPTL	SMOOTH	
.0000 .0478 .0939 .1484 .2208 .3051 .4008 .4991 .6063 .6995 .7505 .8651 .9234 .9618 1.0000	4 • 790 7 • 092 9 • 0592 9 • 0592 10 • 071 10 • 218 10 • 218 10 • 218 10 • 218 3 • 300 9 • 318 3 • 771 7 • 924	4.790 7.092 8.294 9.596 9.596 9.399 10.0767 10.211 10.216 10.2168 9.324 9.324 8.775 7.922	.0000 .0477 .0937 .1483 .2206 .4006 .4006 .6998 .7504 .8651 .9235 .9618 1.0000	42.13 55.95 65.069 87.36 91.525 91.525 91.31 96.18 97.55 96.18 97.52 96.859 96.859 89.00	42.13 55.495 74.60 87.40 91.40 91.40 94.14 97.66 97.66 97.66 97.66 99.01	$\begin{array}{c} .0000\\ .0475\\ .0935\\ .1479\\ .2201\\ .3044\\ .4001\\ .4985\\ .6995\\ .7502\\ .8650\\ .9234\\ .9654\\ .9234\\ .9618\\ 1.0000\end{array}$	200.83 2457.76 3828.97 3628.74 4533.57 487.77 493.00 504.07 498.4 493.40 504.07 498.4	200.83 245.00 3628.00 3628.00 3698.13 4533.62 4533.68 5004.68 5004.68 5004.66 498.4	

Figure 1. Deviation from Raoult's law for the methanol (1) + nitromethane (2) system. The $\times 10^1$ multiplier means that the decimal point in the ordinate scale values must be moved one place to the right.

Figure 2. Deviation from Raoult's law for the ethanol (1) + nitromethane (2) system. The $\times 10^1$ multiplier means that the decimal point in the ordinate scale values must be moved one place to the right.

ı	IQU	ID	MOLAR	VOL	UMES,	CC/MOL	: VL(1) =	40.800	VL(2) =	54.000			
1.	(1 000(200(300(500(500(500(500(500(500(5		TOTAL EXPI 114 15 15 15 16 17 17 16 17 17	PRE 755333 275732 28757 28431 2845111 284511 284511 284511 284511 284511 2845111 284511 284511 284	SSURE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	KC.75 44.776 4.000 5.8777 6.003 5.8747 5.8747 5.8747 5.843 7.343 7.43 7.43 7.43 7.43 7.43 7.43 7	MIXTURE CDEFFI 9989 9971 9965 9960 9958 9957 9958 9957 9956 9957	FUGACITY CIENTS 9980 9953 9938 9938 9938 9938 9934 9934 9932 9931 9930 9930 9930 9933	Y1 •0000 •6182 •7009 •73500 •7555 •7722 •7900 •8113 •8416 •8941 •0000	ACTIVITY C 1 6.8609 4.2222 2.8954 1.7672 1.4878 1.2664 1.0745 1.0020 56.700	DEFFICIENTS 1.0000 1.0256 1.02965 1.2003 1.3484 1.5519 1.5519 2.2382 2.8614 3.8485 5.7062	EXCE GIBB FUNCT J/MOI 413 700 1009 1037 901 1037 901 1037 901 1037 901 1037 901	SSI - 0 6036453300
1.	X1 0000 1000 2000 3000 5000 5000 5000 3000 9000 LIQ		TOTAL EXP 41 825 105 128 134 140 144 151 151 MULA	PRE 975 318 1251 2939 2939 2939 2939 2939 2939 2939 293	ESSURE 6 8 10 11 12 13 14 14 14 15 15 15 .UMES,	KPA LC975 5-3267 5-327 5-3267 5-32	MIXTURE CDEFF 9938 9869 9808 9793 9773 9773 9775 9754 9754 9754	FUGACITY CIENTS 9884 9775 9775 97680 9657 9640 9640 9640 9640 9640 9640 9640 9640	Y1 •0000 •5306 •6564 •7150 •7511 •8048 •8322 •8653 •9168 1.0000 VL(2) =	ACTIVITY C 3.8130 2.9333 2.3046 1.8886 1.5988 1.3942 1.2466 1.1396 1.0196 1.0000 60.200	DEFFICIENTS 2 1.0000 1.0140 1.0581 1.1304 1.3828 1.5857 1.8739 2.3116 2.9094 4.6191	EXEB GIBE FUNCMOC 347 6104 9910 9910 8001 9910 626 359 0	SSIL 9 9 9 9 9 15 9 15 9 15 15 24 0 9 15 15 24 0
1	X1 0000 2000 3000 5000 67000 8000 8000 8000 8000 8000		TOTAL 12511 26405 493662 53495 53497 53497	P 86 55163 597030 660416 8336 8324	ESSURE 156 393 4469 513 55 55	A 9297272054 KC5527720554324 KC552772005 KC5527772005 KC5527772005 KC5527772005 KC5527772005 KC557772005 KC557772005 KC557772005 KC557772005 KC557772005 KC557772005 KC557772005 KC557772005 KC557772005 KC557772005 KC557772005 KC557772005 KC557772005 KC557772005 KC557772005 KC557772005 KC557772005 KC557772005 KC5577772005 KC5577772005 KC557777777777777777777777777777777777	MIXTURE CDEFF 9343 9702 9603 9603 95455 94559 94422 9379 9350 9350	FUGACITY CIENTS •9688 •9318 •9215 •9184 •9038 •8999 •89967 •8944 •8939	Y1 • 0000 • 4629 • 6136 • 6905 • 7391 • 73769 • 8101 • 8427 • 8796 • 9264 1• 0000	ACTIVITY C 2.8756 2.2788 1.9332 1.6705 1.4675 1.4674 1.3157 1.2032 1.1173 1.0557 1.0147 1.0000	DEFFICIENTS 1.0000 1.0116 1.0413 1.0413 1.1724 1.2810 1.4304 1.6420 1.9484 2.4459 3.2349	EXCER GIBCT GIBCT U/MO1 2990 5930 8043 88200 7300 731. 0	SSIL • 03031964 • 17590480 • 000
Y COEFFICIENTS	00 8.00 10.00 12.00		ΜĔŢ	HANGL	(1) + A 294 B 394 C 384	NITROMET 5.16 K 5.17 K 5.24 K	HANE (2)		Y COEFFICIENTS 00 8.00 10.00 12.00 ▶ ▶ ■ 1.00 12.00	ETHANOL (1)	+ NITROMETHAN a 283.18 K 340.15 K 2395.17 K	ιΕ (2) Α	
ACTIVIT	0.00 2.00 4.00 6. al 2 1 2 1				0.40	0.60 X1	0.80	B + + + + + + + + + + + + + + + + + + +	ACTIVIT		.40 0.60 X1	A A A A A A A A A A A A A A A A A A A	

Table IV. Calculated Data for the Methanol (1) + Nitromethane (2) System at 298.16, 348.17, and 388.24 K

Figure 3. Activity coefficients for the methanol (1) + nitromethane (2) system. Curves are from Barker method; points-are from Mixon et al. method.

Figure 4. Activity coefficients for the ethanol (1) + nitromethane (2) system. Curves are from Barker method; points are from Mixon et al. method.

Table V.	Calculated Data	for the Ethanol (1) +	Nitromethane (2) System	1 at 298.18, 348.15, and 398.17	/ K
----------	-----------------	-------------------------	-------------------------	---------------------------------	-----

FIÓNID	MOLAR VOLUMES, CC/MOL: VL(1) = 58.824	VL(2) ≖	53.990	
X1 .000 .2000 .2000 .4000 .4000 .6000 .7000 .8000 .9000 1.0000	MIXT TOTAL PRESSURE, KPA EXPTL, CALC, 4.790 3.407 9.4475 9.4475 9.4475 9.4475 9.4475 9.4475 9.4475 9.466 9.886 10.076 10.163 10.163 10.163 10.209 10.216 10.209 10.216 10.058 9 7.922 7.922 9	URE FUGACITY IEFFICIENTS 984 9980 971 9965 963 9961 966 9959 966 9958 965 9958 965 9958 965 9958 965 9958 965 9958 965 9958 965 9958 967 9960 973 9967	Y1 0000 4711 55335 601569 6649622 6649622 1.0000	ACTIVITY CDEFFICIENTS 1 9.0906 4.9990 1.0297 3.2961 1.1068 2.4256 1.2252 1.9132 1.3519 1.6283 1.3519 1.9672 1.1931 2.4954 1.0881 3.2874 1.00241 4.6714 1.0000 7.3129	EXCESS GIBBS FUNCTION, J/MOLE0 464.35 792.632 1134.87 1170.49 1170.49 1170.49 1170.49 1170.52 757.56 0.00
LIQUID	MULAR VOLUMES, CC/MOL: VL	(1) = 63.686	VL(2) =	57.389	
X1 •0000 •1000 •3000 •4000 •5000 •6000 •7000 •8000 •9000 1.0000	MIX TÜTAL PRESSURE, KPA CI EXPTL. CALC. 42.127 42.127 66.854 66.856 79.777 79.783 86.943 86.947 91.376 91.379 94.206 94.207 94.206 94.207 97.318 97.313 97.503 97.502 95.759 95.758 89.303 39.003	TURE FUGACITY DEFFICIENTS 1 2 9910 9883 9355 9815 9328 9780 9812 9760 9812 9760 9812 9760 9796 9748 9796 9748 9792 9732 9789 9732 9789 9732 9789 9737 9807 9757	Y1 •0000 •4197 •5409 •6489 •6790 •7424 •7542 •8542 1•0000	ACTIVITY COEFFICIENTS 1 20000 3.1696 1.0157 2.4531 1.0624 1.9804 1.1408 1.6628 1.2532 1.4356 1.4134 1.2698 1.6422 1.1573 1.9510 1.0681 2.4853 1.0194 3.2613 1.0000 4.6878	EXCESS GIBBS FUNCTION J/MOLE0 374.62 659.37 980.79 1024.15 989.18 876.47 679.37 0.00
LIQUID	MULAR VOLUMES, CC/MOL: VL	(1) = 70.087	¥L(2) ≖	61.450	
X1 0000 1000 3000 4000 5000 6000 7000 9000 1.0000	TÜTAL PRESSURE, KPA MIX EXPTL. CALC. 200.329 200.429 290.429 290.440 352.003 352.614 396.566 396.574 429.105 429.110 453.609 453.612 472.497 453.612 487.680 487.681 498.041 498.642 504.054 504.054	TURE FUGACITY JEFFICIENTS 9720 9615 9589 9445 9499 9329 9436 9247 9389 9187 9354 9142 9327 9142 9327 9103 9305 9081 9289 9062 9281 9054 9289 9068	Y1 00000 35921 51177 65779 7051 7404 8389 9033 1.0000	ACTIVITY COEFFICIENTS 1 2 2 2 2 2 2 2 2 2 2 2 2 2	EXCESS SIBBS FUNCTION J/MOLO 285.623 609.71 786.238 6770.071 809.71 786.238 542.30 313.200

Table V1. Parameters for Peng-Robinson Equation^a

component	<i>T</i> _e , K	Р _с , МРа	ω	
nitromethane ethanol	588.0 516.2	6.313 6.383	0.3460 0.6350	
methanol	512.6	8.096	0.5590	

^a Binary interaction constant was set at 0.0 for all systems.

actual comparison of the splined-fit values and the experimental P values, see Tables II and III.

Both systems showed only positive deviations from Raoult's law and those deviations increased with the temperature. The methanol system forms an azeotrope at 298.16 and 348.17 K but not at 388.24 K. The ethanol system has an azeotrope at all three temperatures.

Reduced Data

The y_i , γ_i , and $G^{\rm E}$ values selected for publication are given in Tables IV and V. Those values were obtained with the Mixon et al. data reduction method. The Peng-Robinson equation of state (δ) was used to estimate the vapor-phase fugacity coefficients. The pure-compound parameters used for the Peng-Robinson equation are in Table VI.

The "experimental" pressure values tabulated in Tables IV and V are actually interpolated values from the cubic splined fits of the experimental P vs. x_1 values. (The fidelity with which the splined fits represent the actual experimental P values is shown in Tables II and III.) The "calculated" pressure values are from the Mixon et al. data reduction method. That method can usually be made to reproduce the input P values to any desired precision.

The *PTx* data were also reduced with the Barker method (7) using the seven G^{E} correlations listed in Table VII. As shown there for the methanol + nitromethane system, the five-constant Redlich-Kister equation usually represents the experimental *P* data best with the modified Margules equation (9) a close second. The maximum percent deviation and the root-mean-squared deviation (rmsd) are defined at the bottom of Table VIII, which gives a more complete comparison of the two data reduction methods insofar as the accuracy of the *P* fits is concerned. The Barker results in Table VIII are from the five-constant Redlich-Kister G^{E} correlation, and the Peng-Robinson equation of state was used for both data reduction methods. Usually the Mixon et al. method reproduces the experimental *P* values better, but for the ethanol system the

Table VII. Effect of Calculation Method on γ_i^{∞} Values for the Methanol (1) + Nitromethane (2) System^a

	accuracy of P fits				calcd γ_i	" values			
	m	ax % dev/m	nsd	c	omponent	: 1	co	mponent	2
calculation method	298.16 K	348.17K	388.24K	298.16 K	348.17 K	388.24 K	298.16 K	348.171	K 388.24 K
Mixon et al.	0.1/0.0	0.1/0.0	0.1/0.1	6.876	3.821	2.869	5.600	4.459	3.107
Barker:									
absolute Van Laar	2.8/1.2	0.9/0.5	1.0/0.3	6.194	3.712	2.692	4.744	3.716	2.976
Wilson	0.3/0.1	0.3/0.1	0.5/0.2	7.173	3.930	2.764	5.543	3.961	3.063
NRTL	0.2/0.1	0.3/0.1	0.3/0.1	7.010	3.926	2.799	5.569	3.958	3.093
modified Margules	0.2/0.1	0.3/0.1	0.3/0.1	7.113	3.924	2.828	5.530	4.040	3.181
UNIQUAC	1.6/0.7	0.5/0.3	0.8/0.3	6.554	3.797	2.722	5.037	3.807	3.008
Redlich-Kister, three constants	0.5/0.2	0.3/0.1	0.3/0.2	6.826	3.918	2.803	5.668	3.945	3.080
Redlich-Kister, five constants	0.2/0.1	0.2/0.1	0.2/0.1	7.081	3.892	2.829	5.574	4.011	3.150
Gautreaux-Coates:									
splined fits				6.874	3.819	2.875	5.592	4.433	3.106
$\bar{P}_{\rm D}/x_1x_2$ plots				6.635	3.852	2.822	5.811	4.475	3.123

^a Virial equation, Tsonopoulos correlation (8).

Table VIII. Comparison of the Barker and Mixon et al. Pressure Fits

	max % c	lev in P ^a	rms for	% dev ^b
temp, K	Barker	Mixon	Barker	Mixon
Methano	ol(1) + Nitr	omethane (2), Peng-Ro	binson
298.16	0.184	0.066	0.071	0.035
348.17	0.226	0.090	0.082	0.046
388.24	0.235	0.136	0.095	0.065
Ethano	l(1) + Nitro	omethane (2), Peng-Rot	inson
298.18	0.055	0.177	0.028	0.066
348.15	0.087	0.063	0.038	0.031
398.17	0.033	0.047	0.017	0.023

^a % dev = 100[$|P_{calcd} - P_{exptl}|/P_{exptl}]$. ^b rms for % dev = $[\Sigma^n (\% \text{ dev})^2/n]^{1/2}$.

Barker method with the five-constant Redlich-Kister equation did better for two of the three isotherms.

Figures 3 and 4 show that the activity coefficient values provided by the two data reduction methods agree very well for these two systems. The points represent the Mixon et al. results while the curves approximate the Barker results. The Barker results were obtained with the five-constant Redlich-Kister equation. The Peng-Robinson equation of state was used by both methods.

Table VII illustrates how the calculated γ_I^{∞} values will vary with the G^{E} correlation used by the Barker method. (Note that the numbers in Table VII are based on the virial equation and the Tsonopoulos (8) correlation.) The use of the Gautreaux-Coates (10) equations to calculate γ_i^{∞} values has been discussed in a previous paper (11). The $(dP/dx_1)_i^{\infty}$ values needed by those equations can be obtained from the cubic splined fits or from a P_D/x_1x_2 or x_1x_2/P_D plot (11). There is always some uncertainty in the extrapolations to $x_1 = 0.0$ and 1.0 on the plots, and the use of the splined-fit values is usually more reliable. The γ_{I}^{∞} values calculated by using the splined-fit slopes agree very well with the Mixon et al. values. Even though the Mixon et al. method is based on the splined fits, the agreement of its $\gamma_I^{~\infty}$ values with the Gautreaux-Coates values is not automatic. The finite-difference Mixon et al. method uses a guadratic fit of G^{E} at $x_{1} = 0.0$ or 1.0 plus the two adjacent G^{E} values to "reach" the γ_I° values, and that quadratic extrapolation in general will provide different values than the Gautreaux-Coates method using the splined-fit slopes. The difference is usually small but can be sizable.

Table IX.	Effect of	Equation o	of State Choi	ice on γ_i^∞ Values	5
Obtained v	with the Mi	xon et al.	Method for I	Methanol (1) +	
Nitrometh	ane (2) at 3	388.24 K			

	γ	เ้
eq of state used	1	2
ideal gas	2.8139	3.5010
virial through B _{ii} :		
Tsonopoulos (8)	2.8694	3.1074
Hayden-O'Connell (12)	3.0333	3.6949
Redlich-Kwong: Lu modification (13)	2.8778	3.3397
Peng-Robinson (6)	2.8756	3.2349

The γ_{I}^{∞} values (as well as all the y_{I} , γ_{I} , and G^{E} values calculated) are also functions of the equation of state used to estimate the vapor-phase fugacity coefficients. Table IX compares the Mixon results obtained with several equations of state. The pressure ranged from 151 to 558 kPa for the methanol system at 388.24 K and at those pressure levels the variation of the calculated results with the equation of state used can be significant.

Registry No. Methanol, 67-56-1; ethanol, 64-17-5; nitromethane, 75-52-5.

Literature Cited

- Khurma, J. R.; Muthu, O.; Munjal, S.; Smith, B. D. J. Chem. Eng. Data., first of five preceding articles in this issue.
 Khurma, J. R.; Muthu, O.; Munjal, S.; Smith, B. D. J. Chem. Eng. Data., third of five preceding articles in this issue.
- Khurma, J. R.; Muthu, O.; Munjal, S.; Smith, B. D. J. Chem. Eng. (3) Data, fifth of five preceding articles in this issue.

- (4) Maher, P. J.; Smith, B. D. J. Chem. Eng. Data 1979, 24, 16.
 (5) Mixon, F. O.; Gurnowski, B.; Carpenter, B. H. Ind. Eng. Chem. Fundam. 1965, 4, 455. (6) Peng, D.-Y.; Robinson, D. B. Ind. Eng. Chem. Fundam. 1976, 4, 455
- Barker, J. A. Aust. J. Chem. 1953, 6, 207. (7)
- (8)
- Tsonopoulos, C. *AlChE J* **1974**, *20*, 263. Abbott, M. M.; Van Ness, H. C. *AIChE J*. **1975**, *21*, 62. (9)
- (a) Gautreaux, M. F.; Coates, J. Alche J 1955, 1, 496.
 (11) Maher, P. J.; Smith, B. D. Ind. Eng. Chem. Fundam. 1979, 18, 354. (12) Hayden, J. G.; O'Connell, J. P. Ind. Eng. Chem. Process Des. Dev.
- 1975, 14, 209. (13) Hamam, S. E. M.; Chung, W. K.; Elshayah, I. M.; Lu, B. C. Y. Ind. Eng. Chem. Process Des. Dev. 1977, 16, 51.

Received for review July 29, 1982. Accepted September 24, 1982. We gratefully acknowledge the financial support received from the National Sci-ence Foundation Grant CPE-80000534 and from the Industrial Participants in the Thermodynamics Research Laboratory.